344 research outputs found

    Tactile numerosity is coded in external space

    Get PDF
    Humans, and several non-human species, possess the ability to make approximate but reliable estimates of the number of objects around them. Alike other perceptual features, numerosity perception is susceptible to adaptation: exposure to a high number of items causes underestimation of the numerosity of a subsequent set of items, and vice versa. Several studies have investigated adaptation in the auditory and visual modality, whereby stimuli are preferentially encoded in an external coordinate system. As tactile stimuli are primarily coded in an internal (body-centered) reference frame, here we ask whether tactile numerosity adaptation operates based on internal or external spatial coordinates as it occurs in vision or audition. Twenty participants performed an adaptation task with their right hand located either in the right (uncrossed) or left (crossed) hemispace. Tactile adaptor and test stimuli were passively delivered either to the same (adapted) or different (non-adapted) hands. Our results show a pattern of over- and under-estimation according to the rate of adaptation (low and high, respectively). In the uncrossed position, we observed stronger adaptation effects when adaptor and test stimuli were delivered to the “adapted” hand. However, when both hands were aligned in the same spatial position (crossed condition), the magnitude of adaptation was similar irrespective of which hand received adaptor and test stimuli. These results demonstrate that numerosity information is automatically coded in external coordinates even in the tactile modality, suggesting that such a spatial reference frame is an intrinsic property of numerosity processing irrespective of the sensory modality

    The ventriloquist in periphery: Impact of eccentricity-related reliability on audio-visual localization

    Get PDF
    The relative reliability of separate sensory estimates influences the way they are merged into a unified percept. We investigated how eccentricity-related changes in reliability of auditory and visual stimuli influence their integration across the entire frontal space. First, we surprisingly found that despite a strong decrease in auditory and visual unisensory localization abilities in periphery, the redundancy gain resulting from the congruent presentation of audio-visual targets was not affected by stimuli eccentricity. This result therefore contrasts with the common prediction that a reduction in sensory reliability necessarily induces an enhanced integrative gain. Second, we demonstrate that the visual capture of sounds observed with spatially incongruent audio-visual targets (ventriloquist effect) steadily decreases with eccentricity, paralleling a lowering of the relative reliability of unimodal visual over unimodal auditory stimuli in periphery. Moreover, at all eccentricities, the ventriloquist effect positively correlated with a weighted combination of the spatial resolution obtained in unisensory conditions. These findings support and extend the view that the localization of audio-visual stimuli relies on an optimal combination of auditory and visual information according to their respective spatial reliability. All together, these results evidence that the external spatial coordinates of multisensory events relative to an observer's body (e.g., eyes' or head's position) influence how this information is merged, and therefore determine the perceptual outcome

    Fermi-surface transformation across the pseudogap critical point of the cuprate superconductor La1.6−x_{1.6-x}Nd0.4_{0.4}Srx_{x}CuO4_4

    Get PDF
    The electrical resistivity ρ\rho and Hall coefficient RH_H of the tetragonal single-layer cuprate Nd-LSCO were measured in magnetic fields up to H=37.5H = 37.5 T, large enough to access the normal state at T→0T \to 0, for closely spaced dopings pp across the pseudogap critical point at p⋆=0.235p^\star = 0.235. Below p⋆p^\star, both coefficients exhibit an upturn at low temperature, which gets more pronounced with decreasing pp. Taken together, these upturns show that the normal-state carrier density nn at T=0T = 0 drops upon entering the pseudogap phase. Quantitatively, it goes from n=1+pn = 1 + p at p=0.24p = 0.24 to n=pn = p at p=0.20p = 0.20. By contrast, the mobility does not change appreciably, as revealed by the magneto-resistance. The transition has a width in doping and some internal structure, whereby RH_H responds more slowly than ρ\rho to the opening of the pseudogap. We attribute this difference to a Fermi surface that supports both hole-like and electron-like carriers in the interval 0.2<p<p⋆0.2 < p < p^\star, with compensating contributions to RH_H. Our data are in excellent agreement with recent high-field data on YBCO and LSCO. The quantitative consistency across three different cuprates shows that a drop in carrier density from 1+p1 + p to pp is a universal signature of the pseudogap transition at T=0T=0. We discuss the implication of these findings for the nature of the pseudogap phase.Comment: 11 pages, 12 figure

    Pseudogap phase of cuprate superconductors confined by Fermi surface topology

    Full text link
    The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping p∗p^* that is material-dependent. What determines p∗p^* is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping pFSp_{FS} at which the large Fermi surface goes from hole-like to electron-like, so that p∗p^* ≀\leq pFSp_{FS}. We derive this result from high-magnetic-field transport measurements in La1.6−x_{1.6-x}Nd0.4_{0.4}Srx_xCuO4_4 under pressure, which reveal a large and unexpected shift of p∗p^* with pressure, driven by a corresponding shift in pFSp_{FS}. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that p∗p^* can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap.Comment: 15 pages, 5 figures, 7 supplemental figure

    Multivoxel Pattern Analysis Reveals Auditory Motion Information in MT+ of Both Congenitally Blind and Sighted Individuals

    Get PDF
    Cross-modal plasticity refers to the recruitment of cortical regions involved in the processing of one modality (e.g. vision) for processing other modalities (e.g. audition). The principles determining how and where cross-modal plasticity occurs remain poorly understood. Here, we investigate these principles by testing responses to auditory motion in visual motion area MT+ of congenitally blind and sighted individuals. Replicating previous reports, we find that MT+ as a whole shows a strong and selective responses to auditory motion in congenitally blind but not sighted individuals, suggesting that the emergence of this univariate response depends on experience. Importantly, however, multivoxel pattern analyses showed that MT+ contained information about different auditory motion conditions in both blind and sighted individuals. These results were specific to MT+ and not found in early visual cortex. Basic sensitivity to auditory motion in MT+ is thus experience-independent, which may be a basis for the region's strong cross-modal recruitment in congenital blindness

    Peripersonal space representation develops independently from visual experience

    Get PDF
    Our daily-life actions are typically driven by vision. When acting upon an object, we need to represent its visual features (e.g. shape, orientation, etc.) and to map them into our own peripersonal space. But what happens with people who have never had any visual experience? How can they map object features into their own peripersonal space? Do they do it differently from sighted agents? To tackle these questions, we carried out a series of behavioral experiments in sighted and congenitally blind subjects. We took advantage of a spatial alignment effect paradigm, which typically refers to a decrease of reaction times when subjects perform an action (e.g., a reach-To-grasp pantomime) congruent with that afforded by a presented object. To systematically examine peripersonal space mapping, we presented visual or auditory affording objects both within and outside subjects' reach. The results showed that sighted and congenitally blind subjects did not differ in mapping objects into their own peripersonal space. Strikingly, this mapping occurred also when objects were presented outside subjects' reach, but within the peripersonal space of another agent. This suggests that (the lack of) visual experience does not significantly affect the development of both one's own and others' peripersonal space representation

    A new view of electrochemistry at highly oriented pyrolytic graphite

    Get PDF
    Major new insights on electrochemical processes at graphite electrodes are reported, following extensive investigations of two of the most studied redox couples, Fe(CN)64–/3– and Ru(NH3)63+/2+. Experiments have been carried out on five different grades of highly oriented pyrolytic graphite (HOPG) that vary in step-edge height and surface coverage. Significantly, the same electrochemical characteristic is observed on all surfaces, independent of surface quality: initial cyclic voltammetry (CV) is close to reversible on freshly cleaved surfaces (>400 measurements for Fe(CN)64–/3– and >100 for Ru(NH3)63+/2+), in marked contrast to previous studies that have found very slow electron transfer (ET) kinetics, with an interpretation that ET only occurs at step edges. Significantly, high spatial resolution electrochemical imaging with scanning electrochemical cell microscopy, on the highest quality mechanically cleaved HOPG, demonstrates definitively that the pristine basal surface supports fast ET, and that ET is not confined to step edges. However, the history of the HOPG surface strongly influences the electrochemical behavior. Thus, Fe(CN)64–/3– shows markedly diminished ET kinetics with either extended exposure of the HOPG surface to the ambient environment or repeated CV measurements. In situ atomic force microscopy (AFM) reveals that the deterioration in apparent ET kinetics is coupled with the deposition of material on the HOPG electrode, while conducting-AFM highlights that, after cleaving, the local surface conductivity of HOPG deteriorates significantly with time. These observations and new insights are not only important for graphite, but have significant implications for electrochemistry at related carbon materials such as graphene and carbon nanotubes

    No rapid audiovisual recalibration in adults on the autism spectrum

    Get PDF
    Autism spectrum disorders (ASD) are characterized by difficulties in social cognition, but are also associated with atypicalities in sensory and perceptual processing. Several groups have reported that autistic individuals show reduced integration of socially relevant audiovisual signals, which may contribute to the higher-order social and cognitive difficulties observed in autism. Here we use a newly devised technique to study instantaneous adaptation to audiovisual asynchrony in autism. Autistic and typical participants were presented with sequences of brief visual and auditory stimuli, varying in asynchrony over a wide range, from 512 ms auditory-lead to 512 ms auditory-lag, and judged whether they seemed to be synchronous. Typical adults showed strong adaptation effects, with trials proceeded by an auditory-lead needing more auditory-lead to seem simultaneous, and vice versa. However, autistic observers showed little or no adaptation, although their simultaneity curves were as narrow as the typical adults. This result supports recent Bayesian models that predict reduced adaptation effects in autism. As rapid audiovisual recalibration may be fundamental for the optimisation of speech comprehension, recalibration problems could render language processing more difficult in autistic individuals, hindering social communication

    Accessible High-Throughput Virtual Screening Molecular Docking Software for Students and Educators

    Get PDF
    We survey low cost high-throughput virtual screening (HTVS) computer programs for instructors who wish to demonstrate molecular docking in their courses. Since HTVS programs are a useful adjunct to the time consuming and expensive wet bench experiments necessary to discover new drug therapies, the topic of molecular docking is core to the instruction of biochemistry and molecular biology. The availability of HTVS programs coupled with decreasing costs and advances in computer hardware have made computational approaches to drug discovery possible at institutional and non-profit budgets. This paper focuses on HTVS programs with graphical user interfaces (GUIs) that use either DOCK or AutoDock for the prediction of DockoMatic, PyRx, DockingServer, and MOLA since their utility has been proven by the research community, they are free or affordable, and the programs operate on a range of computer platforms
    • 

    corecore